Screening for interaction effects in gene expression data
نویسندگان
چکیده
منابع مشابه
Screening for interaction effects in gene expression data
Expression quantitative trait (eQTL) studies are a powerful tool for identifying genetic variants that affect levels of messenger RNA. Since gene expression is controlled by a complex network of gene-regulating factors, one way to identify these factors is to search for interaction effects between genetic variants and mRNA levels of transcription factors (TFs) and their respective target genes....
متن کاملProtein arrays for gene expression and molecular interaction screening.
The array format has revolutionised biomedical experimentation and diagnostics, enabling ordered high-throughput analysis. During the past decade, classic solid phase substrates, such as microtitre plates, membrane filters and microscopic slides, were turned into high-density, chip-like structures. The concept of the arrayed library was central to this development which now extends from DNA to ...
متن کاملIdentifying Gene Interaction Enrichment for Gene Expression Data
Gene set analysis allows the inclusion of knowledge from established gene sets, such as gene pathways, and potentially improves the power of detecting differentially expressed genes. However, conventional methods of gene set analysis focus on gene marginal effects in a gene set, and ignore gene interactions which may contribute to complex human diseases. In this study, we propose a method of ge...
متن کاملImproved Procedure for Screening Expression Libraries for Novel Autoantigens
The standard method for immunoscreening of a cDNA expression library is time-consuming becauseof the production of a large proportion of false positives during the first and second round of screening.This problem is more important when a sensitive chemiluminescence detection system is used. Due tothe high sensitivity of the detection system, there is a need to avoid false posi...
متن کاملClassification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2017
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0173847